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FOREWORD

This report describing the formulation of the Statistical
Trajectory Estimation Programs is provided in accordance with
Part IV.A.L of NASA Contract NAS 1-8500. An additional report
describing utilization of these programs is presented in NASA

CR-66837.

This work was conducted for NASA Langley Research Center
under the direction of Robert J. Mayhue (Technical Monitor),
Sherwood Hoffman (Alternate Monitor), both of the Applied
Materials and Physics Division, and George B. Boyles (Computer
Analyst) of the Analysis and Computation Division.
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FORMULATION ON STATISTICAL TRAJECTORY ESTIMATION PROGRAMS

By William E, Wagner and Arno C. Serold
Martin Marietta Corporation

SUMMARY

This report documents the theory, equations, and numerical
techniques in the Statistical Trajectory Estimation Programs
(STEP1 and STEP2)., These programs were originally developed and
used on the U,S, Air Force Precision Recovery Including Maneuver -
ing Entry (PRIME) Program to perform the postflight trajectory
reconstruction and analysis of the SV-5D maneuverable lifting
reentry vehicle, They have since been considerably improved under
NASA Contract NAS1-8500.

STEP uses the recursive Kalman minimum variance filtering
algorithms to fit the equations of motion to trajectory measure-
ment data, The programs are formulated to process position
radar tracking and airborne gyro and accelerometer measurements,
The equations of motion account for three dimensional trajectories
in the vicinity of an oblate rotating planet., Vehicle maneuvers
in pitch, roll, and yaw within the atmosphere are acceptable,
STEP1 is restricted to nonthrusting vehicles; STEP2 is applicable
to any vehicle recording accelerations, inertial angular rates,
and having at least partial radar coverage.

In addition to postflight reconstruction, the programs can
be used to solve preflight trajectory simulation and error
analysis problems,

I. INTRODUCTION

The postflight data analysis task is a vital part of all
scientific space missions, The success of any planetary space
mission depends on the amount of information retrieved from the
measuremenis taken, Certainly the enormous costs required to
design, construct, instrument, fly, and support of flights of
space vehicles justifies a significant expenditure of effort
in analyzing the measurements taken,



The problem to which we address ourselves here is the accurate
determination of the trajectory, subsystem performance, and atmos-
pheric characteristics of a flight vehicle from data sensed during
the flight. The information assumed to be at our disposal for
performing such analysis includes ground- or ship-based position
radar or optical tracking, airborne accelerometer, and gyro data.

The process of.using these measured data to perform the re-
construction is called trajectory estimation., Webster defines
estimation as an approximate calculation. In fact, the trajec-
tory estimation process is nothing more than using the only in-
formation available (airborne and ground-based semsor data) to
approximately calculate the position and velocity of the vehicle,
How well this approximation agrees with the vehicle's actual
position and velocity may never be exactly known, but can be es-
timated. Thus, the second approximate calculation concerns the
accuracy of the trajectory estimate.

In the past, two basic concepts have been used to reconstruct
trajectories in the Earth's atmosphere. The first comnsists of
using radar or optical tracking data to determine vehicle posi-
tion (refs. 1 and 2), The velocity is determined from Doppler
measurements and/or by numerically differentiating the position
data. The second technique consists of integrating the airborne
accelerometer and gyro data, Double integration of the accelera-
tions yields the position/time history, The accelerometers are
oriented during the integrations via the integrated gyro data.

The first method, using radar data, requires continuous radar
coverage, yields no vehicle attitude information, and, if numerical
differentiation of position data is used, can produce inaccurate
velocity information. The second method, using accelerometer and
gyro data, requires accurate information concerning initial posi-
tion, velocity, and attitude to commence the integration. Further-
more, errors propagate rapidly as a result of initial condition
errors or systematic errors in the data,

There are many variations of these two basic methods. Having
determined the trajectory, and assuming the aerodynamic coeffi-
cients known from preflight analyses, the measured accelerations
yield the atmospheric density from the equation p = - (Zm aXB)/
(Vi S CA)' Assuming a gravitational acceleration known, the
hydrostatic equation, dp = - pg dho, can be integrated to yield

the pressure/time history. The assumption is usually made that
the atmosphere is adiabatic (temperature a linear function of
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altitude) or isothermal (temperature constant), thus permitting
explicit integration of the hydrostatic equation., Knowing the
pressure, the equation of state p =(Mo p)/(R* T) can be used

to determine the temperature (ref. 3). Such techniques are called
deterministic because the number of variables to be determined
equals the number of discrete measurements used.

The reconstruction technique described herein is specifically
oriented toward using statistical estimation theory to reconstruct
trajectory, atmospheric, and aerodynamic characteristics, The use
of estimation theory to determine trajectory characteristics is
not new, Over the past 10 years, numerous investigators have used
estimation theory to determine orbits of satellites (ref. &4 thru 7).
However, the application of estimation theory to in-atmosphere
flight is relatively new and not without many unresolved difficul-
ties. In orbital and interplanetary space, the principal forces
acting on spacecraft are gravitational and are accurately repre-
sented mathematically; however, the principal forces acting on in-
atmosphere vehicles are aerodynamic and are rather imprecisely
characterized mathematically., Furthermore, in the atmosphere the
trajectory is predominantly influenced by the vehicle's attitude,
which, in turn, is governed by complex guidance and autopilot
systems through fins, flaps, or other external devices. Thus,
the principal difficulty in applying estimation theory to in-
atmosphere problems lies in formulating the dynamic model,

The statistical trajectory estimation problem can be described
as follows, Given a dynamic model consisting of the equations of
motion that describe the flight of a vehicle through the atmos-
phere. These equations of motion characterizing this model can be
written as ordinary first-order nonlinear differential equations.
There are a total of 12 equations -- three translational dynamic
equations that balance external forces and yield the velocity
vector, three translational kinematic equations that yield posi-
tion, three rotational dynamic equations that balance external
torques and yield the inertial angular rate vector, and three
rotational kinematic equations that yield angular orientation or
attitude. If 12 initial conditions are specified for the dependent
variables, the equations can be integrated in time to yield a
trajectory. At any instant of time, the range (R), azimuth
(A), and elevation (E) from the vehicle to a tracking radar
can be determined from three algebraic equations that yield R,

A, and E as functions of the instantaneous position of the
vehicle, which, in turn, is a function of the initial conditions
from which the equations of motion were integrated. Other sensor



data can similarly be calculated, but for simplicity, we will
limit this discussion to R, A, and E,

The trajectory estimation problem is the inverse of that just
described. Given the tracker R, A, E time history, we can
determine the initial conditions that yield a trajectory satisfy-
ing the given R, A, E time history. Given exactly 12 R, A,
E versus time points, we could deterministically solve for the
12 initial conditions to yield a trajectory that exactly satisfies
the 12 R, A, E points. Given more than 12 R, A, E points,
however, we have an overdetermined problem (more requirements
than variables to solve for) and must resort to regression analy-
sis, One of the simplest methods would be to determine the 12
initial conditions that cause the sum of the squares of the
residuals between the measured R, A, E points and the calcu-
lated R, A, E points to be minimum. This would be a least-
squares solution, Because some measurements are better than
others, one might weight the residuals by the inverse of their
standard deviations and obtain a weighted least-squares solution,
Weighting the data by the inverse of its covariance matrix yields
a minimum variance solution, For uncorrelated data, the minimum
variance and weighted least-squares solutions are the same, STEP
uses linear filter theory to recursively obtain the minimum-vari-~
ance (or weighted least squares) solution for uncorrelated data,
The general theory underlying the filter application is presented
in Section IIIL,

The difficulty in applying the technique just described lies
in formulation of the equations of motion. For example, in the
three rotational dynamic equations that balance external torques,
all guidance and autopilot functions that steer engines, flaps,
fins, gas jets, etc., must be properly described mathematically.
Furthermore, all aerodynamic and thrust moments must be accurately
described. Accurate representation of all torques is difficult
because of all the uncertainties involved. Therefore, the STEP
models omit the three rotational dynamic equations and use instead
the inertial angular rates measured by airborne gyros aboard the
vehicle, Systematic error in these rates is accounted for in the
modeling (e.g., gyro misalignment, scale factor, random bias, g-
bias, and anisoelastic drift). Thus, we have a STEP1 formulation
that contains the nine equations of motion but requires inertial
angular rate histories, Solutions of its dynamic model satisfy
the inertial angular rate data exactly., STEPl fits the dynamic
model to position radar tracking data as well as airborne ac-
celerometer data,



The major difficulty in STEPl is that of accurately repre-
senting the external aerodynamic accelerations acting on the ve-
hicle and required in the three translational dynamic equations,
The aerodynamic acceleration representation requires accurate
modeling of aerodynamic coefficients, atmospheric density, and
vehicle mass, which are usually not known precisely. Thus, the
STEP2 model omits the external acceleration representation by
using the airborne accelerometer measurements directly in the
translational dynamic equations of motion, Systematic error in
the accelerometer data is accounted for in the modeling. STEP2
fits its dynamic model to the position radar tracking data only.

We see that both STEPL and STEP2 determine the nine initial
conditions (three velocity, three position, three attitude) from
which the equations of motion must be integrated to satisfy the
tracking measurements (and accelerometer measurements for STEPL)
in a minimum-variance sense. The nonlinear equations of motion
in the original STEP models as well as the minimum-variance fil-
ter theory are presented in reference 8. The detailed equations
of motion in the current programs are described in Section IV,
The equations that characterize the measurements to which the
equations of motion are fit are presented in Section VII, The
primary difference between the original STEP formulation (ref. 8),
and that described herein is in the form of the equations of
motion, In the original formulation the state variables in the
dynamic equations of translation were the relative velocity, path
angle, and heading angle. The state variables in the kinematic
equations of rotations were the roll angle about the velocity
vector, angle of attack, and sideslip angle., The formulation had
the advantage of yielding state variables of practical interest
to the user but had the disadvantage of being cumbersome and
possessing singularities, In the formulation reported herein,
the velocity is integrated in inertial Cartesian components and
the attitude is characterized by a four parameter system of Euler
parameters. The dynamic model has thus been significantly sim-
plified, but now the state variables have little practical utility
to the user. Therefore, optiohal forms of input and output have
been provided to permit the user to work with more familiar vari-
ables, These input/output transformations are presented in Sec-
tion VI,

Other parameters in the equations of motion can be estimated
just as the initial conditions are, For instance, biases can be
included in the modeling of the aerodynamic coefficients, If the
time variations of such biases can be described by differential



equations, the differential equations can be added to the equa~
tions of motion and the bias estimated along with the other ini-
tial conditions. Otherwise, the biases must be assumed constant
over the trajectory, the constant value being estimated along
with the initial conditions, The improved STEP models include
150 such systematic error sources modeled on the accelerations,
inertial angular rates, aerodynamic coefficients, density, cen-
ter of gravity, atmospheric winds, mass, and tracking radar
measurements,
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II., SYMBOLS AND ABBREVIATIONS

azimuth of radar tracker. Ac is calculated with-
out systematic error, equation (238b), AM is
modeled or measured with systematic error, equa-

tion (239)

acceleration relative to planet surface, equation
(57)

parameters in the airborne radar equation, equa-
tion (277)

accelerations acting through center of gravity in
body axes directions

acceleration modeled or measured at inertial
measuring unit in body axes directions with sys-

tematic error included

acceleration at inertial measuring unit in body
axes directions without systematic error

anisoelastic error model parameter, equation (155)

orthogonal transformation matrix used in quaternion
development, equation (72)

parameters used in input transformation defined in
equation (228)

matrix inverse defined in equation (266)

modeled error coefficient defined in equations
(147) to (159), and equations (239)

covariance operator

parameters in airborne radar equations, defined in
equations (276)

speed of sound, equation (125)

Correlation between the model parameter errors u
and expanded state variable errors =z, seec equa-
tion (50)

Correlation between the measurement parameter er-
rors v and edpanded state variable errors z,
see equation (50)

~{



D determinent defined in equation (265)
D covariance of model parameters U, equation (41)

D parameters in output transformation defined in
equation (232)

d parameters in input transformation defined in
equation (227)

E, Ec, Ey elevation angle of radar tracker, EC is calculated
without systematic error, equation (238c), EM is
modeled or measured with systematic error, equa-
tion (239)

e( ) expectation operator

e unit vector designation

e(pse1,en,e3 Euler parameters, equations (79) and (101)

e, parameters in input transformations, defined in

] equations (218)
F external force vector

FXG’ FYG’ FZG components ?f external force vector in G-frame
axes, equation (63)

F coefficient matrix of linear differential equa-
tions of motion, equation (3)

f nonlinear equations of motion, equations (1) and
(45)
G coefficients of linearized measurement equations,

equation (4)

G proportionality factor used in equations (123),
depending on units of H, 1i.e., GdH = g(ho)dho,

where g(ho) is the acceleration of gravity

G transformation matrix between G-frame and B-frame,
defined in equation (79)

g nonlinear measurement equations, equations (2)
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lgs mg> g
lgs Mg B4

elements of transformation matrix G

geopotential attitude and base points for atmos-
phere calculations, equation (121)

partial derivative of measurement equations with
respect to measurement parameters V, equation
(51b)

altitude of vehicle above spherical planet and
oblate planet

input and out transformation functions defined in
equations (207a) and (209a)

altitude of tracking station above oblate planet,
equation (236)

identity matrix

parameter in minimum variance equations, equations

(53£)

coefficient of second gravitational harmonic, e-
quation (105)

optimal linear gain, equation (53e)

slope of molecular scale temperature versus alti-
tude profile, equation (122)

vehicle reference length used in calculating
Reynolds number, equation (148)

number of components in W wvector, equation (41)

direction cosines defined in equations (269) and
(270)

molecular weight of the atmosphere at sea level,
equation (123)

Mach number, equation (143)
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NI’ NO
P, Py

P

P, Py

PRIME

Q, Q

q

q

q

R*

Ra» Rp> Rp

transformation matrixX in quaternion development
defined ir equation (74)

vehicle mass

modeled mass time history, equation (149)

matrices for performing input and output transfor-
mation of covariance and correlation matrices,

equations (208) and (210)

inertial angular rate about roll axis without and
with systematic error, equation (154)

covariance matrix of state or expanded state er-
rors, equations (21), (53b), and (54b)

atmospheric pressure and base pressures in atmos-
phere calculations, equation (123)

Precision Recovery Including Maneuvering Entry

inertial angular rate about pitch axis without and
with systematic error, equation (154)

quaternion defined in equation (65)
dynamic pressure, equation (142)
number of components in U wvector, equation (41)

range of radar tracker, Rc’ is calculated without
systematic error, equation (238a), RM is modeled

or measured with systematic error, equation (239)

inertial angular rate about the yaw axis without
and with systematic error, equation (154)

universal gas constant, equation (123)
average, equitorial and polar planet radius

radius of oblate earth at latitude ¢, equation
(145)



R
e

R
R

Ryw> Ryp> Rzp
Rye’ Bye Rze

Reynolds number, equation (148)

slant range for airborne radar, equation (273)

components of airborne radar range vector in B-
frame and G-frame

radial distance from planet center to vehicle,
equation (63); also used as position vector from

planet center to vehicle, equation (56)

radial distance from planet center to tracking
station, equation (236)

number of components in V vector, equation (44)
covariance of matrix V, equation (45)

vehicle reference area for aerodynamic coefficients,
equation (110)

vector used in quaternion development (see fig. 3)
Sutherland coefficient in equation (126)

sum of squares of residuals in equation (13)
Statistical Trajectory Estimation Programs
temperature

transformation matrix for aerodynamic coefficients
in equation (196)

molecular scale temperature and base points, equa-
tions (122)

time
uncertain model parameter vector in the equations

of motion, its mean value, and perturbation, equa-
tion (49)

11
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u, v, w
YA VA0 VA
“g> VB> VB
u v

\

2,

2,

z

components of inertial velocity in G-frame axes,
equations (62) and (63)

components of relative velocity in the G-frame
axes, equation (114)

components of relative velocity in B-frame axes,
equation (116)

components of horizontal wind vector from the north
and east, respectively, equation (152)

uncertain measurement parameter vector, its mean
value, and perturbation, equation (49)

velocity relative to planet surface, equation (57)
velocity relative to atmosphere, equation (141)

model and measurement parameters to be estimated
and their perturbations, equation (41)

state vector, its perturbation and best estimate
of perturbation, equations (1), (6a), and (14)

corrected distance from the center of gravity to

the inertial measuring unit (accelerometers) meas-
ured along the B-frame axes; positive for the IMU
forward, starboard, and below the center of gravity,
see equation (153)

Cartesian components of tracker range vector, see
figure 6 and equation (235)

measurement vector and perturbations, equation (2)
and (4)

measurement residual vector defined in equation
(12) with components defined in equation (9)

expanded state vector include both state and model
parameters to be estimated, its perturbation, and
best estimate of perturbation, equations (48), (49),
and (53a)
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Greek

o, B

angle of attack and sideslip angle, degrees
Sutherland coefficient in equation (126)
specific heat ratio, equation (125)

flightpath angle of velocity vector relative to
atmosphere, equation (219)

pitch angle of body fixed radar, see equation
(271b) and figure 7, degrees

noise vector on measurements, equations (10)
incremented quaternion, equations (84) thru (87)

dummy variable used in Sections V and VII for state
variable components and model parameters Ci

angular orientation of S vector relative to G-frame
in figure 3

total resultant angle of attack, see figure 4,
degrees

difference between vehicle longitude and tracking
station longitude, equation (236)

difference between vehicle longitude and the longi-
tude of the airborne radar slant range vector/
planet surface intersection, equation (274)
longitude of vehicle, figure 2

longitude of tracking station, figure 5

parameter transition wmatrix, equation (52)

Euler angle in pitch, equations (212) thru (217),
degrees

matrix abbreviation defined in equation (13)

azimuth of velocity vector relative to atmosphere,
equation (219)

13
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azimuth of airborne radar vector, see equation
(271a) and figure 7

coefficient of the first harmonic of gravity, equa-
tion (105)

atmospheric viscosity, equation (126)

rotation in quaternion development, equation (74)
and figure 3

steering angle, see figure 4, degrees

atmospheric density after and before error model
corrections, equation (151)

batch processing weighting matrix, equation (16)

roll angle about the velocity vector, figure &,
degrees

standard deviation and correlation coefficient,
equation (18)

covariance or weighting matrix of measurement data
point, equation (16)

time difference in mass error model, equation (150)

difference between geodetic and geocentric latitude
at the tracking station, equation (236)

latitude
state transition matrix, equations (7)
geodetic latitude

geocentric and geodetic latitude of tracking sta-
tion, equation (237)

Euler angle in roll, equation (212) thru (217),
degrees

Euler angle azimuth, equation (212) thru (217),
degrees
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Subscripts

C )y
¢ )y
e

¢ g
G
€ Dy

¢ Dot
¢ Jp
¢ g

C JRer
( )S or
€ Dy

(

angular rate of B-frame and G-frame relative to
inertial space, and angular rate of B-frame rela-
tive to G-frame, equation (96)

angular rotation rate of planet about axis

€z1
relative to inertial space, equation (96)

abbreviation for cofactors in equation (264)

relative to the atwmosphere in STEPl or planet sur-
face in STEP2

refers to B-frame or base points in atmosphere de-
scription

calculated, does not include systematic error
refers to G-frame

refers to point of intersection of airborne radar
slant range vector and planet surface

either measured or modeled to characterize a meas-
urement

pertains to planet oblateness
refers to inertial measuring unit
refers to airborne radar

corresponds to reference trajectory

refers to tracking station

corresponds to x, y, or 2z axis directions

15
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III. MATHEMATICAL THEORY

Given a dynamic model consisting of ordinary first-—order non-
linear differential equations of motion that describe the flight
of a vehicle through the atmosphere,

X(t) = £[X(t),t] @

If dnitial conditions are specified for the dependent (state)
variables, X, the equations can be integrated in time to yield
a trajectory. At any instant of time the range, (R), azimuth
(A), and elevation (E) from the vehicle to a tracking radar can
be determined from three algebraic equations that yield R, A,
and E as functions of the instantaneous position of the vehicle.

Y(t) = glX(t),t] (2)

The R, A, and E at any time are, therefore, functions of the
initial conditions from which the equations of motion were inte-
grated. Other sensor measurements (e.g., accelerometer, gyro,
pressure, temperature, etc.) can similarly be calculated from equa-
tions of the form of equation (2).

The trajectory estimation problem is the reverse of that just
described. Given the radar tracking data YM(ti) at the discrete

times i =1, 2, ..., n, determine the initial conditions that
yield a trajectory satisfying the YM(ti) data. Given exactly 12

scalar data points YM(ti)’ we can deterministically solve for

the 12 initial conditions that yield a trajectory exactly satisfy-
ing the 12 YM(ti) data points. Given more than 12 data points,

however, we have an overdetermined problem (more requirements than
parameters to solve for) and must resort to regression analysis.
One of the simplest methods is to determine the initial conditionmns
that cause the sum of the squares of the residuals between the
measured data YM(ti) and that calculated via equation (2),

Y(ti)’ to be minimum. This would be a least-squares solution.

Generalizing X to be an m-component state vector and Y to be
a p—component measurement vector, we will proceed to develop such
a least-~squares solutiom.



A. Linearization

To obtain such a least-square solution, one must first linear-
ize equations (1) and (2) to obtain:

x(t) = P(t) x(t) 3)
y(t) = G(t) x(t) (4)
where
x(t) = X(t) = Xppp(t) (5a)
y(t) = Y(t) - YREF(t) (5b)
and
o <
3,  of, 3f,
o
sz 3f2 L. sz
F(t) =| 3%1 3%, 3%y (6a)
Bfm Bfm Sfm
axl 8x2 me
L - REF
28, 2g; o8,
axl ax2 me
g, %8, ., ., ., 38,
a(t) = Bxl ax2 9%y, (6b)
og og og
5_2. 5_E 5._R
i X Xy xm__REF
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Note that equations (3) and (4) govern perturbations between the
solution X(t), Y(t) and a reference solution XREF(t), YREF(t),

which satisfies equations (1) and (2). A known solution to equa-
tion (3) is ¢(ti,tj) called the state transition matrix. This

solution possesses the following properties (ref, 9):

d¢(t,to)

aT = F(B) o(t,ty) (7a)
o(t,t) =1 for all t (7b)
¢(t2,t0) = 0(t,,t1) O(t ty) (7¢)
x(t) = ¢(t,to) x(to) (74)

Properties (7a) and (7b) suggest that ¢(t,t0) can be obtained

by integrating the perturbation equations, equations (3), from
identity initial conditions at time ¢tg-

B. Batch Processing Algorithms
Substituting property (7d) into equation (4) yields
y(£) = 6(t) o(t,tg) x(ty) (8)
which relates perturbations from the reference measurement at time
t to perturbations from the reference state at time ty, Assuming

that X(t) and Y(t) are the desired 'best estimated values,"
then

M(t1) = Ym(*1) ~ Yrer(ti) %)

is the perturbation between the actual measurement and reference
measurement at time t, and should differ from y(ti) by an

amount G(ti) the noise in the measured data

u(t1) G(ti) ¢(ti,t0) X(tg) + 5(ti)

i=1, 2, ..

(10)

., I
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Considering all n measurement equations we can write

Yy = A x(tg) + 8 (11)
where
[334(2) EORGED I
. - YM.(tz)’ . G(tz) ‘f’(tz’to)’ . é.(tz) w2
_yMitnz LG(tn) $(tn’t02 Lditnz

The sum of the squares of the residuals between the measured data
YM(ti) and Y(ti) calculated from equation (2) is

s = (ST(S = [yM - A X(tO)]T [yM - A X(to)] (13)
Minimizing s with respect to x, we obtain for X
s T, V-1
x, = ()7t a oy, (14)
which is the least-squares estimate for X,. Adding §0 to

XREF(tO)’ we obtain ﬁ(to) the initial conditions for the non-

linear state variables sought. Recognize that for the solution
to be valid, equations (3) and (4) must satisfy the linearity as-
sumption. This requires that x and y be small.

Because some measurements are more accurate than others, one
might weight the residuals & by the inverse of their standard
deviation.

Equation (13) therefore becomes

=1l (15)
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where

- B
°2(t1) 0 G%(ti) 0

o?(t2) o3 (1)
. with cz(ti) = .

The weighted least-squares estimate can be written as
~ -1
X, = (AT g2 A) T AT 31 ™ an
Weighting the data by their complete covariance matrix,
- -
2
91(t1)  12(t1)  » ¢ 91p(ty)

021(t1) og(tl) .« o 0 °2p tl)
. (18)

L°pl(t1) 9pa(t1) + + + 95(E1)

one obtains a minimum variance estimate.

Equation (17) yields io as a linear function ‘of Yapo which,

in turn, is a function of the assumed random noise in the data §

from equation (11). Therefore, X, is a random vector. Assuming

that § is a jointly normally distributed white random noise vec-

tor with zero mean, then yy and likewise x, are normally dis-

tributed. The mean and covariance of § are

() =0
(19)
cov(S) = &
The mean and covariance of YM are
e(ym) = A Xg

co\r(yM) = e{[yM - e(yM)] [YM - E(yM)] T} = L

0 0% (Ep) 0 °g(t1)

(16)



The mean and covariance of ﬁo are

e(ﬁo) = (T g1 A)_l AT 571 e(yM) = x,

(21)
cov(ﬁo) = (ATE"l A)-l =P

The mean of the best estimate of ﬁo is equal to X thus ﬁo

is an unbiased. estimate. The statistics of a normally distributed
random vector are completely determined from the mean and covari-
ance. Therefore, equations (17) and (21) completely describe the

random vector N in terms of its mean, Xy and covariance, P.

C. Recursive Processing Algorithms

The estimator equation, equation (17), exhibits the computa-
tional difficulty of requiring large matrices to be calculated and
stored in the computer. Furthermore, having determined X, for

n data points YM(ti)’ i=1,2, .. .n, if an addition point
YM(tn+l) becomes available, the entire process must be repeated

using n + 1 points. It would be convenient if, after initially
determining x, using n points, we could improve this estimate

using only information contained in the (n + 1)th data point.
Such a recursive algorithm will be developed next (refs. 8 and
10 thru 15)., The best estimate X,, corresponding to processing

n data points, from equation (17) is

T _ - \=1
Xon =Pp A I ! yy where P, = (AT Y (22)

Similarly, the best estimate ﬁo corresponding to processing
n + 1 data points is

- T - - __1
Kontl = Prgl A% T*7D y¥ where Py = (AT px71 p%) (23)

From their definition, A, I, and yy are related to A%, I%, .
and yﬁ as follows:
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A% =

A £ [ O Vi
= sy L% = |77 I""2" ————— > gk = | TTTTTTTT (24)
C(*n+1) *(tar10%o) 0 197 (*n+1) Mo (tar)
Equation (23) can therefore be written
' _ -1 1
2 = [AT§¢T GT]Z* 1M A [AT:¢T GT]Z*‘I Yy (25)
On+l SO e S SN
Go yM(tn+l)
which can be manipulated into the following.
X, =X, - K [G¢ X, - yM(tn+li] (26)
n+l n n 1
T T T T{~
K=P ¢ G [oz(tn_H_) + G P ¢ G] (27)
Pn+1 = Pn - K G¢ Pn (28)
where
G = G(tn+l) and ¢ = ¢(tn+l’t0) (29)

Equations (26) thru (28) are the recursive equations sought. Given
the best estimate and covariance at time t,; corresponding to n
data points, X and Pn’ respectively, corrections can be made
n

by means of squation (26) thru (28) that yield the best estimate
and covariance corresponding to n + 1 data points. The recur-
sive correction can be least squares, weighted least squares, or
minimum variance depending on whether Oz(tn+l) is an identity

matrix, diagonal matrix of variances or complete covariance of the
(n.-i-l)th data vector. Note that if instead of estimating x at tgp,

we had used an arbitrary time, say tj’ we would have obtained

X(tjltnﬂ) = x(tj,tn) - K[Gd) x(tj|tn) - yM(tn+l)] (30)
tT [, il It

K=P, ¢ G loP(tpy1) + 6o Py ¢ 6 (31)

Poag =P, - KG ¢ P (32)




where

G = G(thyr) 3 ¢ = o(t 0ty (33)

The notation x(tjltn+l) denotes the best estimate at tj based

on processing data through tn+l' Equations (30) thru (33) can be

used for smoothing, filtering, or predicting depending on tj as

follows

t. <t

i 41 smoothing

t, = t

j = tgy filtering (34)

tj >t predicting

STEP uses filtering equations that can be obtained from equa-
tions (30) thru (33) by letting tj = to+l-

;(tn+l|tn+l) = ;‘(tn+l|tn) - K[G;‘(':n+1|tn) - yM(tn+l)] (35)
T 7]t
K =P (tg41) © [oz(tn+l) + G Po(the1) © ] (36)
Pot1(Pat1) = Pa(tnt1) ~ K G Pu(tns1) (37)
where
G = G(tn+l) (38)

The matrix Pn(tn+l) is the covariance matrix of state errors at

time t based on processing data up through t,- From the

n+1
T -1
definition of P, in equation (22), we see that P = (A g1 A) .
Using the definition of A in equation (12), with t, = t, and
to+1s We obtain the following equation for propagating P between

data points:

T
Pn(tn+l) = ¢(tn+l-’tn) Ph(tn) ¢ (tn+1’tn) (39)
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From equation (7d), we see that the state perturbations can be
propagated between data points as follows:

x(tn+l|tn> = ¢(tn+l’tn) x(tnltn) (40)

Equations (35) thru (38) are used at measurement data times to,

i=1,2, ..., n to produce a discontinuous change in x and P,

which reflect the information obtained from the (n+l)th measure-—
ment YM(tn+l)‘ Between measurements, equations (39) and (40) are

used to propagate x and P.

D. Uncertain Model Parameters

Frequently when fitting solutions of the equations of motion
to sensor data, parameters other than the state variables are
either unknown or known with limited certainty. Examples of such
parameters that are involved in the equations of motion, equation
(1), are the gravitational harmonic coefficients, the aerodynamic
lift and drag coefficients, and, conceivably, the atmospheric den-
sity. The modeled measurement equations, equation (2), similarly
can involve such parameters, e.g., tracking station locations.
Within the context of the filter theory discussed thus far, such
variables must be governed by differential equations if they are
to be estimated. For cases where the governing differential equa-
tion is known, it is merely appended to the dynamical system equa-
tions, equation (1), and the parameter becomes a state variable.
More frequently, however, the governing differential equation can-
not be defined, and special treatment must be resorted to. One
common way of handling such parameters is to consider them con-
stant, thus their governing equation can be written ii = 0. We

then speak of an expanded state vector that includes the original
state variables plus the constant model parameters to be estimated.
Occasionally, an estimate of the model parameters is not sought,
but it is desired to reflect the parameters uncertainty in the
covariance matrix of state errors.

We will next expand the filtering equations to include un-
certain model parameters in both the state equations and measure-
ment equations (Refs. 15 and 16). Some parameters will be esti-
mated, others will not. Consider the following dynamical system
composed of first-order, nonlinear differential equations that
describe the state of a vehicle:

X(t) = £[X(t), W, U, t] (41)



where X 1s an m-vector of state variables (e.g., pesition, veloc-
ity, and attitude); W 1s an %-vector of model parameters (in
either the equations of motion or measurement equations) that are
to be estimated along with the state; and U 1s a g-vector of un-
certain model parameters in the equations of motion that are not

to be estimated, but nevertheless their uncertainty shall degrade
the confidence of the state estimate. The mean value of U 1is

specified a priori to be U0 and its covariance matrix is D.

Consider W and U to be constant vectors, equation (41) can be
rewritten as follows:

X°(t) = £[X°(t),t] (42)

where

X* = (43)

o= X

The first m equations in equation (42) are identical to equation
(41). The last & + q equations merely state the W = 0 and
U=0, 4i.e., the components of W and U are constant with time.

The variables being measured at time ti are related to the

state as follows:
Y(t) = g[x’(ti), v, ti] (44)

where Y is a p-vector of measurement variables, and V is an
r~vector of uncertain measurement parameters that are not to be
estimated but whose uncertainty shall degrade the confidence of

the state estimate. The mean value of V is V0 and its covari-

ance matrix is S.
Again, expanding the state vector to include V, we have

X°7(t) = f[X"7(v),t] (45)

where

(46)

<a=E
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and

(%) = g[x (ti)’ti] (47)
The first m equations in equation (45) are identical to equation
(41), _and the last % + q + r equations state the W =0, U =0,
and V = 0.

The minimum variance filtering equations corresponding to
equations (45) and (47) are identical to equations (35) thru (40),
with X and P replaced by x°° and P°°. However, we did not
desire to estimate vectors U and V. Thus, we will partition

-

X and P~ into the parts being estimated and those not being
estimated. Defining Z to be the expanded vector being estimated,
then

Z = (48)

Perturbations in U and V about their mean values, and 2Z about
its reference solution are

u="0U - UO
z =2 - Zppy

The covariance matrix P~ 1is partitioned into a m + £ sub-
matrix P corresponding to Z and the q x q and r X r sub-
matrices D and S corresponding to U and V, respectively.

_ | .
| Cuz : CVZ } m + £
_____ | e | e
ol b op : 0 50
s |Gy, | }q (50)
e J—
I CVz I 0 ! S | } r

The matrices Cuz and CVz contain correlation terms between

u and z, and v and 2z, respectively. The vectors u and

v are assumed to be independent so that their correlation is zero.
The G matrix is partitioned into the m + 2 + s submatrix G
corresponding to Z, and the r x r submatrix H corresponding
to V



1Z24

G“=[ ¢ | 0 H] (51a)

where

G = (Qg) and H = (EE) (51b)

The state transition matrix ¢~ 1is partitioned into the (m X £)
X (m + %) submatrix corresponding to 3z(tn+ll//8z(tn) s the

(m + 2) X q submatrix 6 corresponding to Pz(tn+ll//8u,&nﬂ,

and identity and null submatrixes as follows:

b f 9 i 0 m+ 2
—_—— =t
6°° = 011 : 0 q (52)
SRR [
| I
0 | 0 ) I T

Because u and v are not being estimated, their covariances

D and S in equation (50) will remain constant throughout the
minimum variance processing. Had U and V been permitted to
be estimated, they would have been included in Z and their co-
variance would been updated.

Substituting equations (48) thru (52) into equatioms (35) thru
(37) yields the following recursive minimum variance filtering

equations for an expanded state with uncertain parameters contained
in the equations of motion and measurement equations:

2(tn+l|tn) = 2(tn+l|tn) - K[éé(tn+lltn) - yM(tn+l)] (53a)

T 1" (s3m)
Pn+l(tn+l) = Pn(tn+l) - K Pn(tn+1) G + Cvzn(tn+l) H

Cuzpy ((n#1) = Cuzp (Pn+l) - K[G Cuzn(tnﬂ_)] (53¢)

cvzn+l(tn+1) = Cvzn(tn+1) - K[G Cyz_(Enr1) * H s] (53d)
T T| -1

K= [Pn(tn+1) ¢+ Cvz(tn+l) H ] J (53e)

T T T T T
J=0 Pn(tn+1) G+ G Cvzn(tn+l) 4 + H Cvzn(tn+l) G + HSH + oz(tn+l)

(53f)

27



28

The estimate, covariance, and correlation matrices are propagated
between measurement points by means of the following equation ob-
tained from equations (39) and (40):

(54c)

- = - 54
2(the1lty) = ¢ 2(tylt)) (54a)
T T T T T
Pn(tn+l) =9 Pn(tn) ¢ + ¢ Cuzn(tn) 6 + ¢ Cuzn(tn) ¢ + 6D8
Cuz (tn+l) =9 Cuz (tn) +60D
n n
Cvz (tn+l) =0 Cvz t (544d)
n n n
where
¢, = ¢(tn+l,tn), G = G(tn+l), H= H(tn+l), and 0 = e(tn+1) (54e)

E. Computational Procedures

Because of the complexity of the recursive filtering equations,
we will next outline the sequential operations performed when ap-
plying these equations to a problem. The flow logic diagram (fig.
1) will aid in the discussion. Sequential operations are:

1)

2)

3)

Estimate the values of the initial expanded state vec-
tor Z(to) and its covariance Po(to), the model pa-

rameters U, and V,; and their respective covariances
D and S, and the correlation matrices C (u ),
uZO 0

C .z
and vzo(to) Z(to) will be used as the reference

solution ZREF(tO)'

Set the measurement data polnt counter, i = l.

Obtain the first measurement data point of the chrono-

logically ordered data. The magnitude, YM.’ time,
i

ti’ and covariance, oz(ti), are required.

(54b)
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Figure 1,- Schematic of Recursive Filtering Logic
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4)

5)

6)

7)

8)

9

Integrate the nonlinear state equation, equations (41)
from initial conditions Z (t. ) to t,., This
REF\ "i-1 i

solution will be used as the reference. Calculate the
state transition matrix ¢(ti—l’ti) and parameter

transition matrix e(ti) corresponding to the refer-

ence solution (see Section III.F for methods of deter-
mining these matrices).

Calculate the reference value of the nonlinear meas-
ments, YREF(ti)’ from equation (44). Also calculate

G and H matrices in equation (51b) at time ¢t .
i

Calculate yM(ti)’ the difference between the actual

measurement, 'YM , and corresponding reference meas-
i

surements, YREF(ti)'

Propagate the expanded state perturbations, the co-

variance and correlation matrices from ¢t 1 to tl
i-

by means of equation (54). Note that when beginning
the process, z(tolto) = 0.

Perform the minimum variance update at t by using

equation (53) in the following order:
Calculate J;

Calculate K;
Calculate Pi(ti)’ Cuzi(ti)’ Cvzi(ti);
Calculate E(ti1ti).

The linear filter theory can now be used in either of
two ways —- either update the reference or do not up-
date the reference trajectory. When a good initial
estimate of the expanded state is unavailable and/or
the measurement data signal-to-noise ratio is large,
advantages can be gained by updating the reference;
when the signal-to-noise ratio is small and a good
reference is available, it is better not to update the
reference:



Updated reference - Add the estimate of the ex-
panded state perturbations z(tilti) to the non-

l1inear state as follows
Z(ti) = Zpep(t) * 2(t4|t1) (57)

then redefine Z(t ) to be the reference for fu-
ture processing. Because the correction z(tilti)

has been accounted for in the updated reference,
set E(t,lti) to zero for future use. Go to item
i

10).

Nonupdated reference - Do not reflect the estimate
of the perturbations z(t |ti) into the reference

state REF(ti) until all data have been processed.
Thus, ZREF(ti) is nonoptimum as the process pro-
ceeds. The corrections z(tilti) are accumulated
as shown in equation (53a). Go to item 10).

10) Update the measurement data counter, i =i + 1 and
return to item 3).

At the completion of the filtering, when either all data have
been processed or a final time has been met, the reference trajec-
tory is updated if it has not already been (1 e., updated refer-
ence mode). This expanded state vector Z(tf't ) represents the

best estimate at final time based on processing all data. It must
therefore be smoothed back to the initial time to obtain the best

estimate of the state vector at all times (between t0 and tf)

based on processing all data. The covariance matrix must also be

propagated back to t0 to give the uncertainty at any time based

on processing all data. The smoothing of the expanded state vec~
tor is accomplished by integrating equation (41) backward in time
from te to t,. The covariance and correlation matrices are

propagated backward in time via equations (54). The resulting
initial state vector can be used for a second iteration if neces-
sary or desired. The smoothed covariance matrix should not be
used on the second iteration, however, since it does not reflect
the true certainty of the first iteration, because of possible
linearity violations, and will be optimistic (too small). Good
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criteria are not currently available for selecting initial covari-
ance and correlation matrices for the second iteration; therefore,
good judgment must be used.

F. Transition Matrices

In equation (52), the state transition matrix, ¢, is an
m x (m matrix, which relates perturbations in the ex-
(m + %) (m + 2) tri hich relates perturbati in th
panded state variables at time t, to perturbations at time o+l

These perturbations occur about the nominal or reference trajec-
tory and are governed by the linearized equations of motion as
seen in equation (7a). The expanded state variable perturbations
correspond to both state variables and model parameters that are
to be estimated. When the model parameters are constant (governed
by differential equations that state that Zi = 0) the calcula-

tion of their elements in ¢ 1is simplified.

Referring back to equation (1), the nonlinear system of ordi-
nary differential equations can be linearized to yield equations
(3). The state transition matrix ¢ is a solution to the Ilinear-
ized equations as shown in equation (7a) and can be calculated by
integrating equations (3) from identity initial conditions as
shown in equation (7b).

Consider the system of differential equations in equation (45).
Linearizing these equations and integrating from identity initial
conditions yields the transition matrix in equation (52). Note
" that there are m + 2 + g + r equations in the system. However,
all but the first m equations state that the time derivative of
Wy, U, and V -equal zero. Thus the matrix ¢~ can be parti-
tioned into the following:

¢
2 \

‘ (55)
7" = 0—+1I 0 0 } L

|

j
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The upper left (m + 2) x (m + &) submatrix constitutes the state

transition matrix ¢ in equations (54). The upper middle (m + %)

x q submatrix constitutes the parameter transition matrix 6 in
equations (54). To obtain ¢ and 6 only m 1linear differen-

tial equations of motion need be integrated. However, m + 2 + q
independent vector solutions are calculated, each solution having
a different component of z or u equal unity, all other compo-
nents zero at the initial time of integration.
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IV, NONLINEAR EQUATIONS OF MOTION

The principal difficulty in formulating a reentry filtering
program arises in mathematically describing the dynamical system,
As a result, two models have been formiulated and each has been
carried through the computer program development phases. The
STEP1 model has included within it an accurate representation of
the vehicle aerodynamics as well as atmospheric conditions that
affect the aerodynamic forces. The STEP2 model bypasses the re-
quirement of specifying aerodynamic and atmospheric character-
istics by using the measured body translational accelerations
directly in the equations of motion., Both programs use the meas-
ured inertial angular rates to replace the rotational dynamics,
This alleviates the requirement of solving the full 6-D equations
of motion including guidance system and autopilot. In the follow-
ing subsections, the detailed equations of state in both their
nonlinear and linear forms are presented for STEPl and STEP2. The
linear equations of motion are used to determine the state tran-

sition matrix.
A, Axes Systems

The axes systems used in the following development are now
described with the aid of figure 2,

1. Inertial axes (I—fréme, unit vectors eyps eyrs eZI)‘—

The inertial axes is a right-hand Cartesian axes system fixed in
space. Neither its orientation nor the position of the origin
varies with time. In applying Newton's laws of motion, the dy-
namic motion is referenced to this space fixed axes. The e,

axis points through the north geographical pole; eyt and ey1
lie in the equitorial plane.

2. Planet axes (P—frame, unit vectors exp* Syp? eZP)'_

This planet fixed axes constitutes a right-hand Cartesian axes
system having its origin at the center of the planet., It is fixed
in the planet so that the axes rotate relative to the I-frame

The eZP axis points toward the north geographic pole, The e

XP

and eYP lie in the equatorial plane with eyp directed toward

the prime meridian (zero longitude),
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Figure 2.- Schematic of Earth Model

3. Geographic axes G-frame, unit vectors exa® ©yg* ©yge"

The geographic axes form a right-hand Cartesian system with origin
at the vehicle center of gravity, yet always retaining a fixed
orientation relative to the geographic directions. The eZG axis

always points in a direction toward the planet center from the ve-

hicle center of gravity; eYG points east, and eXG points north.

4, Body axes (B—frame, unit vectors eZB)'_ The

°xB* °ym?
body axes is a right-hand Cartesian system aligned with the axes
of the vehicle. The eyn axis is directed forward along the ve-

hicle's longitudinal axisj eYB points right (out the right wing),

and eZB points downward.
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B. Translational Equations of Motion
Newton's second law written in vector form is
F=m?t

where F 1is the total external force vector acting on the vehicle,
m 1is the mass of the vehicle, and r 1is the position vector from
the origin of an inertial axes system to the center of mass of the
vehicle. The acceleration ¥ is related to the inertial axes
system. The external force vector F includes all aerodynamic,
propulsive, and gravitational forces acting on the body.

Expanding T in terms of velocities and accelerations rela-
tive to the planet surface yields:

. a + 2{Q x V + Q x| x7r

r = ( P ) P ( P )
relative coriolis centrapetal

acceleration acceleration acceleration

where a and V are the acceleration and velocity of the vehicle
(treated as a mass particle) relative to the moving planet, Qp'

is the angular rotation rate of the planet relative to inertial
space, and T 1is the acceleration of the mass center with respect
to inertial space., From equations (56) and (57), we obtain the
vector equations of motion

- F _ _
a_ﬁ 2<QPXV) QPX(Qer)

The velocity and acceleration can be expressed in the G-~frame axes
system as follows;:

V =19 egc + 18 COS @ eyq - r esc

[rp + 2rp + 162 sin ¢ cos 9] e

[N
|

XG

+ [(ré + 2%@) cos @ - Zréé sin o] eYG

- Iy = 102 - 2.0 a2
[r a0 r cos<Q 6<] e

(56)

(57)

(58)

(59)

(60)




W/

Substituting equations (59) and (60) into (58) yields the follow-
ing three scalar equations along the G-frame axes coordinate di-
rections

F
e = X6 _ 21 - r sin @ cos o) (éz + ZéQP + QPZ)
m

. F - -
r8 cos @ = —iﬁ ~ 2(r cos @ - r sin ¢¢)(e + QP)

F

r = D2 2 A2 3 2
= - LG + + 62 + 2 + Q
r re ¥ cos Cp( SZPG P ) (61)

Defining u, Vv, and w as the components, the inertial velocity

along the eXG’ eYG’ eZG directions, respectively.
u = ro
v = r(e + QP) cos @
w=-=7x (62)

Equations (6l1) can now be written in matrix form as

u Fyg uw - vZ tan
[ ) —_ 1 l
- YG T |uv tan @ + vw
w Foq -(u? + v?) (63)

Equations (63) are the dynamic equations of translational mo-
tion that yield the inertial velocity vector time history. The

i F F de~
external accelerations, Xq/;, FYG/;’ and ZG/;’ must be de

described in terms of their gravitational, aerodynamic and
propulsive components,

The kinematic equations that yield the position of the vehicle
can be obtained from equations (62) as follows:
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h=r=~w
¢ = u/r
b = v/(x cos @) = QP (64)

The variables u, v, w, h, ¢, and © define the trans-
lational velocity and position of the vehicle and constitute six
of the state variables in the STEP models,

C. Rotational Equations of Motion

Normally six equations are required to characterize the rota-
tional motion of a vehicle -- three kinematic equations that yield
the angular orientation and three dynamic equations that yield the
angular velocity. Like the dynamic equations of translation that
balance the external forces, equations (63), the dynamic equations
of rotation balance and external torques, The external torques on
an entry vehicle arise from the primary propulsion system, attitude
control jets, aerodynamic control devices, as well as internal ro-
tating equipment. Precise modeling of these torques for unsymmet-
trical, guided vehicles is very complex, especially in a filtering
application where a state transition matrix is required. There-
fore, STEP omits the dynamic equations of rotation and instead uses
the inertial angular rate measurements P, Q, and R from air-
borne gyros,

The kinematic equations of rotation are formulated using a
four-parameter system of quaternions (refs. 18 thru 20). This
formulation eliminates the singularities associated with Euler
angles, yet does not require the additional computation associated
with the nine direction cosines., Because quaternions have not been
in common use, a detailed development is presented herein.

The quaternion is a four-parameter quantity commonly written
q=eg+ei+ejt egk (65)

where e;, e;, e,, and ej are real numbers, and i, j, and
k obey the following rules:

i2

ki = -ik = j (66)

I
.

ij = =ji = k  jk = -kj

.\ B \\\



The conjugate of the quaternion q, denoted q¥* 1is
q* = eg - e;1 = e,j - egk (67)
The quantity e; 1is called the real or scalar part of the quater~

nion; eji + ezj + ezk d1s called the imaginary or vector part.
The length or norm of a quaternion is defined to be

L
liall =\,qq* = \/e% + ef + e% + e% (68)
If the quaternion q has a norm of unity, ||q] = 1, it is called

a versor,

Let V be a vector having components u, v, Ww. It can be
written

V=nul +vj + wk (69)

Forming the product V” = q*V ¢, where ¢q 1is a versor yields

v (eg - e1i - epj - ezk)(ui + vi + wk)(eg + e1i + enj + e3k)

[(e] + ef - e - e3) u + 2(e1ez + ege3) v + 2(eres - egex)wli
+ [2(ejer - e0e3) u + (e% - e% + e%_e%) v+ 2 (ege; + e2e3)w]j (70)

+ [2(e1e3 + eoez) u+ 2 (eyeq - eoel) v + (e% - e% - e% + e%)w]k

This is simply the vector transformation

(e% + e% - e% - e%) 2(e e, + eoe3) 2(eje3 ~ege,)

V® = GV with G = |2(eye, =~ e0e3)(e% - e% + e% - e%) Z(eoe1 + e2e3) (71)
2(ejeq + ege,) 2(eje3 - eoel)(e% - e% - e% + e%)

The quaternion may also be viewed in terms of an axis rotation
about a line. It can be shown that the orientation of one axis
system with respect to another axis system is uniquely determined
by a single rotation about a specific direction. The direction
vector S <can be specified by the three angles ¢, n, &, which
it makes with the axes of the reference frame, shown in figure 3.
Thus, we have four parameters that establish the orientation g,

n, &, and u,
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Figure 3,- Axes Orientation

Instead of the commonly used sequence of Euler angles for mov-
ing the reference axis (G-frame) to the body axis (B~frame), the
procedure employing quaternion parameters can be visualized as
follows:

1) Rotate the G~frame, using an orthogonal matrix B of
direction cosines, to cause the e  axis to be aligned
with the direction §; x

2) Rotate around S through the angle 3

3) Rotate through an inverse matrix B~! until the axes
are aligned with the B-frame,

The direction S and the value of 1y must be selected to cause
the alignment.

e. s and e be unit vectors in the G-frame.
XG YG zG

Let ey eY, ez be unit vectors in an axes system having eX
aligned with S, eY lies in the e

Let

< = e plane and e, forms

a right-hand system. Because eX makes angles ¢, n, and §

with e e and e__, the transformation which rotates

e is

d into e e
anc e MO S Sy &y

e
XG?
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°x €xc
= 72
ey B [eys (72)
°z €76
where
b1l = cos bis = cos n b1z = cos & (73a)
are the elements of the matrix B.
The remaining elements of B can be determined because it is
required that eZG be perpendicular to eY, and the matrix B
be orthogonal and reduce to the identity matrix whem ¢ = 0,
n=2¢=a/2, Thus,
b21 = .. €08 n b22 = CO0S [ b23 = Q
sin £ sin §
by = - COS © bzg = - €95 N by, = sin & (73b)
31 sin ¢ 3 tan £ °°
The second rotation through u about ey can be represented by
the matrix
ey ey 1 0 0
ey’ |- m|ey vhere M = 0 cos psiny )
e, ey O - sin u cos y
The final rotation from the ex’, eY', and eZ’ axes to the B-
frame is
e e -
XB X
e = g1 e ”
ve| = B Y (75)
e e_-
ZB Z

The transformation from the G-frame to the B-~frame is the product
of the three transformations above or
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e e

XB XG

. -1
eYB = G eve with G = B" MB (76)
®/8 €26

where G has the elements

|

g1 =1-2 sin? g'sinz z

= iq2 1 -E

815 2(Sln %-cos z cos n + sin %-cos 5 cos g)
= 2(sin? L - sin & Y

813 (s1n 5 cos L cos § sin 5 cos % cos n)

o = ’2.}-1- - i -E -E

801 2(81n > €Os ¢ cos n - sin % cos 5 cos E)

8y = 1 - 2 sin? };l-sin2 n (77)
= 2 (sin? & cos n cos £ + sin £ cos & cos

g23 (sn 5 n € > 2 c)

qq = inl2 H iy B B

231 2(31n 5 cos 7 cos & + sin 2 cos 5 cos n)
= 2 Y - gin & H

832 Z(Sin 5 cos n cos & sin ) cos 5 cos C)

g33 = 1 - 2 sin? -%-sin2 g

To simplify equations (76) and (77), we make the following sub-
stitutions

ey = cos-%, e; = cos [ sin %3 e, = cos 1 sin-%, ey = cos £ sin %- (78)

Thus, the G-matrix becomes
(e% + e% - e% - e%) 2(eje,+ ege3) 2(ere3 - ege2)
G =]2(e,e, - ejyey) (e% - e% + e% - e%) 2(ege; + eyej) (79)
2(eje3 + epe,) 2(e,e3 = egeq) (e% - e% - e% + e%)

which is identical to the transformation matrix in equation (71),
The four quantities eg, e;, ep, and e3 are called Euler
parameters, and, from their definition, equation (78), they must
satisfy the normality property



1

2 2 2 2 =
ef tef tes+es =1 (80).
Hence, they are not independent,
Because the transformation matrix G can he composed of three

orthogonal Euler angle transformations, it also is orthogonal,
Therefore,

¢l =¢" (81)
and

- - ey
e e
XG XB

T
= G 2

®ve °yB (82
®za | A

We have seen that under static conditions the G~frame compo-
nents can be transformed to the B-frame via the transformation
matrix G in equation (76), which is a function of the Euler
parameters eg, €, e2; and e3. These Euler parameters con=
stitute the real numbers in the quaternion g, equation (657.
Equations (78) relate the Euler parameters to angles g, n, &,
and 1u.

Next consider the B-frame rotating with respect to the G=frame
so that at any time t the orientation is given by ¢, un, &,
and u through the quaternion

q = cos %.+ (cos z sin.%)i + (cos n sin %)j + (cos £ sin %)k (83)

At a later time t + At the B-frame can be related to either the
G-frame or the B-frame at a time t. We choose the latter and
orient the B-frame at time t + At (B“-frame) to the B-frame at
time t through the quaternion

Qe =.COS %E-+ (cos z” sin %ﬂ)i

+ (cos n’ sin %E-)] + (cos £” sin ‘%‘E‘)k (84)
where 7, n°, and &~ are angles specifying the direction vec-
tor S° with respect to the B-frame axes at time t, Ap is the

magnitude of the rotation about §°, The quaternion q. can be
written
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- g gei+ 04 + o
qe = (cos &+ 0si+ 00 +0 k)
Au

+ sin 3= [0 + (cos 7)1 + (cos n”)j + (cos £7)k]

2

For Au small sin %E-; %E and cos &% = 1. Therefore,

2

e = L + €

where
A

€ = EH‘[O + (cos 7)1 + (cos n7)j + (cos £7)k]

Because this rotation occurs between time t and t + At,

we can

write the quaternion relating the B”-frame to the G-frame as the
product of q¢ (relating the B"=frame to the B-frame), and q(t)

(relating the B=frame to the G-frame)
q(t + At) = q(t) q¢ = a(e)(1 + €)

The time rate of change of q(t) is defined to be

_ lim  q(t + At) - q(t)
At-»o At

q ()

Therefore,

q(t) =dm_q¢) £ = .;- q(t) 1 [cos £)i + (cos n”)j + (cos £”)k]

At>0 At

But the components of the angular rotation vector in the B-frame

axes are

w_ = W cos ¢~ w. = u cos n” Ww_ =y cos &7

X Y Z
which, when substituted into equation (90), yields
. 1 . .
t) == + + w_k
q(t) > q(t) el +owy] wzk]
Differentiating q(t) in equation (65) yields

&(t) = éo + éli + ézj + é3k

Equating compomnents in equations (92) and (93) gives

(85)

(86)

(87)

(88)

(89)

(90)

(91)

(92)

€93)



- 1 (
= e e ]
eq ) ey e + es UJY + es3 wz)
- l
ey = o= w_ + w - )
1 7 (eo vy + 2 2 7 e %) )
e, = .l. w_ o= w4 w
e,y 5 (eo v ep ¥, ey 'X)
. 1
= - w -
€3 7 (e0 7 + e wY e, @X)
which can be solved for wx, wY, and wZ
wy = 2[-e @3 + e3é; + egé; = e;8(]
vy = 2[+e &5 - eje; + ege, - e,€,] (95)

w, = 2[-e,e, + ese; - ejeq + eqe;]

Thus knowing the four parameters, eg, €3, ez, and e3, and
their rates, the components of the rotation vector can be deter~
mined.

In STEP, we assume that the angular rotation rate vector QB'
between the B—frame and I-frame is known. We desire to determine
the attitude of the vehicle with respect to the G-frame. The ro-

tation vector of the B-frame with respect to the Geframe, QBG’

is the difference between QB and QG’ the later being the

angular rotation vector of the G-~frame with respect to the I~frame.

Q = -
BG QB QG (26)

The inertial angular rates P, Q, and R are components of &

From figure 2, we see that B

Q=......V___e —E
G (r cos @) YA (r) eYG ©7)
where
eZI = (cos ®) eXG - (sin Q) eZG _ (58)
Therefore,
= (X -8 _ v 3
% (r) X6 (r) Y6 (r cos @ )S“n ? %z o
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Using matrix notation we can write equation (96) as followst

-
P ¥
T
= e = (100)
e = |26 |- T
v
R _f T cos sin o
where G is the transformation matrix relating the B~frame to the
G-frame and given in equation (79). Note that the components of
QBG are wx, wY, and wz required in equation (94). Substi-
tuting equation (100) into (94) yields
S . » T 7 r 11
e -, = e, - ¢
0 1 2 3
P z
& eg - €5 e ;
1 1 0 3 2 u >
=L -c |- Xt 101
s > . Q - (101)
e e, -
2 3 0 1 R -y tan
. r
e - e e e
| €3] L= %2 e ol (L] ; 4

which constitutes a system of first-order, nonlinear differential
equations for the Euler parameters as functions of the inertial
angular rates, inertial velocity components and vehicle positions.

Because of the dependency existing in the Euler parameters, as
a result of the normality equation, equation (80), only three of
the scalar equations in equation (101) can be recursively updated
by equation (53a). In Section IV.H, this dependency and the way
the STEP accommodates it will be discussed in more detail,

D. External Accelerations

In equation (63), the external accelerations acting on the ve-
hicle were required. The accelerations normally arise from three
sources =-- gravity, aerodynamics, and propulsion -- which will be
described next.

1. Gravitational accelerations.- The gravitational potential
including up to second harmonic terms is from reference 21.




R R_\3
GM|E E|] 1
U3, ';'-Jz(;—) 20 sinch-l}
where

G = universal gravitational constant

M

mass of the planet

RE equatorial radius

The gravitational potential may be used to obtain the gravita-
tional force per unit mass by means of the gradient operator

F :
Gravity _ _ grad U

m

In spherical polar coordinates the gradient operator is

] 1 ) 19
grad( ) = - 37( ) €26 T T cos © 53{ ) ey T T 35( ) exe

which yields

B 7]
FXG/H - %%-sin 20
FYG/ﬁ - 0
F‘ZG/m Gravity %2—-5% -3 os cp)_‘
where
u = GM
3= % 3 R2

2, Aerodynamic and Propulsive Accelerations.- It is in the
characterization of the aerodynamic and propulsive accelerations
that the STEPl and STEP2 mod